Tunneling, remanence, and frustration in dysprosium-based endohedral single-molecule magnets
نویسندگان
چکیده
منابع مشابه
Influencing the properties of dysprosium single-molecule magnets with phosphorus donor ligands
Single-molecule magnets are a type of coordination compound that can retain magnetic information at low temperatures. Single-molecule magnets based on lanthanides have accounted for many important advances, including systems with very large energy barriers to reversal of the magnetization, and a di-terbium complex that displays magnetic hysteresis up to 14 K and shows strong coercivity. Ligand ...
متن کاملSingle molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene
Increasing the temperature at which molecules behave as single-molecule magnets is a serious challenge in molecular magnetism. One of the ways to address this problem is to create the molecules with strongly coupled lanthanide ions. In this work, endohedral metallofullerenes Y2@C80 and Dy2@C80 are obtained in the form of air-stable benzyl monoadducts. Both feature an unpaired electron trapped b...
متن کاملAn NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation via the second excited state
Single-molecule magnets are compounds that exhibit magnetic bistability purely of molecular origin. The control of anisotropy and suppression of quantum tunneling to obtain a comprehensive picture of the relaxation pathway manifold, is of utmost importance with the ultimate goal of slowing the relaxation dynamics within single-molecule magnets to facilitate their potential applications. Combine...
متن کاملLarge spin-relaxation barriers for the low-symmetry organolanthanide complexes [Cp*2 Ln(BPh4 )] (Cp*=pentamethylcyclopentadienyl; Ln=Tb, Dy).
Single-molecule magnets comprising one spin center represent a fundamental size limit for spin-based information storage. Such an application hinges upon the realization of molecules possessing substantial barriers to spin inversion. Axially symmetric complexes of lanthanides hold the most promise for this due to their inherently high magnetic anisotropies and low tunneling probabilities. Herei...
متن کاملQuantum tunneling of two coupled single-molecular magnets
Two single-molecule magnets are coupled antiferromagnetically to form a supramolecule dimer. We study the coupling effect and tunneling process by means of the numerical exact diagonalization method, and apply them to the recently synthesized supramoleculer dimer [Mn4]2. The model parameters are calculated for the dimer based on the tunneling process. The absence of tunneling at zero field and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017